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AbstmcL Starting from the generalization of the ltzykson-Zukr integral for U(m[n) we study 
the orthogonality relations for this supergroup. 

Motivated by the recent progress made in the study of random surfaces and statistical 
systems on random surfaces,which might have important applications in non-critical string 
theory as well as quantum chromodynamics (QCD) in the large N limit, we have considered 
the extension of some of these ideas to the case where the associated random matrices [l] 
are replaced by supermatrices. An important mathematical object that appears naturally 
in the discussion of random matrices is the Itzykson-Zuber (E) integral over $e unitary 
group [Z]. This integral has been applied to the solution of the two-matrix model [2,3] and, 
more recently, to the Migdal-Kazakov model of ‘induced QCD’ [4]. 

Recently we extended the Iz integral to the case of the unitary supergroup U(m[n) [5 ] .  
In this paper we apply this result to the determination of the orthogonality relations between 
the irreducible representations of this supergroup. The basic problem that arises is that the 
integration measure [dU] over U(m]n) is of the Berezin type, which includes integrations 
over odd Grassmann numbers according to the standard recipe [6]. Thus, in many cases the 
integration over [dU] of supermatrix elements corresponding to arbitrary representations 
of the supergroup will automatically be zero due to the above-mentioned Grassmannian 
character. In particular, this will happen in the case of the orthogonality relations and the 
purpose of this paper is to characterize the irreducible representations of U(mln)  which 
lead to a non-zero result together with the determination of the corresponding normalization 
coefficient. 

I In the following paragraphs we briefly summarize our conventions regarding the 
representation of supergroups, together with some results that will be used subsequently. 

Supergroups will be represented by linear operators E ( g )  acting on some vector space 
with basis {a,}. Linearity is defined by & g ) ( Q p  + @JP) = (&g)Opl)or + ( b ( g ) @ , ) P ,  
where 01 and f i  are arbitrary Grassmann numbers. The action 
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defines a representation (f) of the supergroup characterized by the Young tableau 
( t l ,  tz, . . . , ), with tl 2 f2 2 . . ., in the usual notation. Here the Dyj(g) are the elements 
of an (m, + n,) x (mt + nt) supermatrix written in the standard block form [6]. In 
fact, our definition of linearit given above guarantees that the definition (1) satisfies 
Dyj(g1 *gz) = CK D ~ ~ ( g l ) D E f ( g Z ) ,  thus providing a representation of the supergroup in 
terms of the standard multiplication of supermatrices. 

Schur's lemma can be proved directly in the case of finite supergroups and its extension 
to continuous supergroups is made in complete analogy with the classical case. In general, 
the corresponding measure must be left- and right-invariant under the supergroup action and 
for the case of U(mln) it is defined by [dUl= !L ny;=, dUpQ dUFQ 6(UUt--I), where the 
&function really means the product of (m + n)' unidimensional &functions corresponding 
to the independent constraints set by the condition U U t  = 1. The normalization constant p 
is fixed by our normalization of the supersymmetric IZ integral. It is important to observe 
that the above measure possesses 2mn real independent odd differentials. 

The application of Schur's lemma to the quantity X;: = J[dU] Dyi(U) 
XLMD$,(U-'), where. X L M  is an arbitrary supermatrix, leads to the conclusion that X;; 
must be a multiple of the identity supermatrix. Factoring out the arbitrary piece X L M .  we 
are left with the orthogonality relations 

z, 

/[dU] Dy)(U)Dgt(U) = ( - l ~ ' a i r 1 8 ' 1 6 ~ ~ 8 ~ ~  (2) 

where (Ut)!, = (U-')!, = (U*)JI .  
Compared with the classical case, the appearance of odd integration variables in [dU] 

imposes further contraints upon the representations that give a non-zero value for the 
coefficient a[p,) in (2). The main result of this paper is to characterize such representations. 

Lemma The supercharacters sx( , ) (U)  = xl(-l)f@j(U) of the representations Dyj(U) 
for which cqpl # 0 constitute a linearly independent set. 

The proof goes as follows: the orthogonality relations (2) imply that 

To begin with, we prove that they satisfy the following lemma. 

/[dUl s,qs)(U)D:g(U) = a,SsfSKL. (3) 

Next, let us consider a null linear combination of supercharacters of representations with 
cyiSl # 0 C,va,ysx.T(U) = 0. Multiplying this equation by D,$)*(U) and integrating over 
dU we have ala&, = 0 for each representation It), which shows that ai = 0 provided 

The starting point that leads to the determination of the representations [ t ]  together with 
the values of the non-zero ui1) in (2)  is our supersymmetric extension of the IZ integral given 

fflll # 0 ' 

by [SI 
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and 
m o  

A ( d ) = n ( d ; - d j )  C ( A , X ) = n n ( A i - h , ) .  
b j  i=l u=l 

Here MI and MZ are (m+n) x(m+n) Hermitian supermatrices which can be diagonalized [7] 
and p is a complex parameter. Our notation is such that the first m eigenvalues of M are 
identified by A;, while the remaining n eigenvalues are denoted by i,. Such a partition 
is characterized by the following parity assignment of the eigenvector components V p ,  C p :  

A convenient way of rewriting the standard IZ integral is in terms of its expansion in 
E ( V p )  = €(PI, €(ep) = €(P) + 1. 

characters of the corresponding irreducible representations of the group U(m) [2]: 

Following analogous steps, we obtain the supercharacter expansion of expresion (4) 

The above relation has been obtained without the use of a completeness relation for 
the supercharacters. Here It1 denotes the total number of boxes in the Young tableau 
corresponding to the irreducible representation It)  of U(mln) and qI, counts the number of 
times that this representation is contained in the tensor product @lrlD. 

By the previously proved lemma we see that the representations which contribute to (8) 
have supercharacters that form a linearly independent set. 

Now we consider the determination of the representations with non-zero ayp~. The basic 
expression we use is the character expansion on both sides of  (4), which is 

Now we analyse this equation by considering the following cases. 

(a) The case of l t f  ~< mn 

Before performing any further analysis, from (9) we can immediately conclude that 

ollfl = 0 for It1 = 0, 1, . . . , (mn - 1). (10) 

because on both sides of this equation we have a power series in p, and the right-hand term 
of it starts with p"" while the left-hand one starts with Bo. The proof goes by assuming that 
some coefficients are non-zero. The linear independence of the terms, together with the 
above observation, imply that they must be zero, thus leading to a contradiction. 
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(b) The case of / t /  2, mn 

As we have just stated, equation (9) is a power series in p on both sides of the equation, 
so for the same power of p we must have the same coefficient 

x  AI. ~ i ) ~ i p ~ ( ~ i ) x ~ q ~ ( ~ i )  W z ,  ~ z ) ~ r p ~ ( A z ) X [ q ~ ( ~ z )  - (11) 
where the sum on the LHS is over all tableaux having a fixed number of boxes It[, while 
the sum over [ p ]  and (4) on the RHS is restricted to 

[ P I  + 141 = Id - mn. 

~ x [ I I ( M )  C I P . S I X ( L  ~ ) x I ~ I @ ) x I ~ I ( ~ )  

(12) 
We now want to prove that equation (1 1) necessarily implies that 

for some [ p )  and {q]  satisfying (12) and for a certain representation { t )  that we will 
determine. 

In order to extract more information from (1 1). let us consider an arbitrary supermatrix 
M2, while we restrict the supermatrix M1 in such a way that one of its A-eigenvalues is 
equal to one of its i-eigenvalues. Namely, let Aj = hb, for example. Then, in equation (1 1) 
we are left with 

because X(A1, h l )  becomes zero. If we look at this relation as a null linear combination of 
the supercharacters sx[ , ) (Mz)  with coefficients 

we conclude that the coefficients y(tt are all zero, because the supercharacters appearing 
in (13) constitute a linearly independent set. But qt) and are non-zero, so that we are 
left with sxlrt(i@l) = 0. Recalling that sx[,t(M) is a polynomial function of the eigenvalues 
hi,  h,, we conclude from this relation that s x [ , ) ( M )  must be divisible by (Aj - hp). That 
is to say 

~xI,I(M) = (Aj  - h g ) $ g ( L  1) (15) 
where Fjg(A, h) is another polynomial function of the eigenvalues. The same reasoning can 
be extended to every Ai (i=l, . . . ,m) and h. (or = 1, . . .,n), and this implies that sXII)(M) 
must have the form 

... .. 
s ~ ( t ) ( M )  = n n ( A i  - h,) P(A,  h) = C(A, x) P(A,  h).  (16) 

i=l.=1 

In equation (16), P(A ,  h) must be a homogeneous polynomial function of all the eigenvalues, 
because sx[ , l (M) and CO., h) are so. The degree of homogeneity of sxl, l(M) and X(A, h) 
is It1 and mlt, respectively. This means that the degree of homogeneity of P(1, h) must 
be It1 - mn. Also, we know that sXl,l(M) and X(A, h) are symmetric functions in the 
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eigenvalues hi, Le, separately, and so~should be P(h,  h) .  Summing up then, P(h,  i) is 
(i) a homogeneous polynomial function of degree It] - mn in all the eigenvalues, and (ii) 
a symmetric function of {hi] and {ia}, separately. Since the characters xla](h) ~ ( x [ b ) ( X ) )  
are polynomial homogeneous functions of degree la1 (lbl), which are symmetric in the 
eigenvalues hi (x,) and constitute a complete linearly independent set, P(A,  h) can be 
written as 

p(h,  c ~ ~ , b ) x [ U l ( h ) x [ b l ( x )  (17) 

where the sum in (a) and (b} is rectricted by la[ + [bl = It1 - mn. Substituting this last 
relation in (16) we have 

IntSbI 

Using the above expression in the LHS of (1 1) and comparing both sides of this equation, 
we obtain the result that the expansion in (1 8) must include only one coefficient, for a given 
tableaux ( t } ,  whose precise form is yet to be determined. That is 

s X c r ) ( W  = C & 1 W 3  % x ~ p ~ ( ~ ) x i q l ( %  (19) 

where ( p )  and ( q }  satisfy (12). As the number of solutions to (12) is It/ - mn + 1, the 
supercharacter expansion of the supersymmetric IZ integral will contain only (It1 -mn + I) 
terms, for a given Itl. 

(b)(i) The care of (p} = {q) = 0. Here we have It I = mn and 

sXv)(M) = ~i&lC(h.  x). (20) 

In order to proceed with the required identifications, let us consider the particular case where 
the only non-zero block of the supermatrix M is the m x m block, i.e. 

M‘ 0 
M = (  0 0 ) .  

Then equation (20) reduces to 

Using Weyl’s formula for the character of the representations of the unitary group 

det(p+*-j)  
X(rl(’) = det(ii“-j) 

we conclude that the product of eigenvalues in (22) corresponds to the character of the 
representation ( r )  = (r l ,  r2, .  . . , r,) with ri = n of U ( m ) .  We are using ‘the standard 
notation (r , ,  r2, .  . . , r,) to denote a Young tableau with m rows, such that the ith row 
has ri boxes. In this way we have that X { ~ ) ( M ’ )  = c ~ o , o ) ~ ~ ~ , ~ , . . . , ~ ) ( M ‘ ) ,  which allows the 
identification of the representation { t }  as the one given by the tableau corresponding to 
t~ = tz = . . . = rm = n, together with c ~ ~ ! o l  = 1. Besides, we identify Z(h ,  h) as 
the supercharacter of the representation referred to above. We will denote by (mn) the 
representation just found, whose tableau consists of m rows, each with n boxes. 
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(b)(ii) The case-of @) # 0, [q] = 0. Here we have jtl = IpI + mn and sxel(h4) = 
C ~ , ~ ~ Z ( A ,  h)xlpl(A). Considering in this expression the same choice of M as in ( 2 1 ) ,  
we have xlr)(M') = ~ ~ , ~ , ( n ~ . = ,  Aj)"Xlpl(A). Again using Weyl's formula we are able 
make the identification (ny=, A#'x(pt(l) = x{~+ , , ) (A) ,  where by {n + p )  we mean the 
representation with Young tableau (n + PI, n + p z .  . . . , n + pm) .  This leads to xlI)(M') = 
~ l ~ . o ~ x ( ~ + ~ , . ~ + ~ .  ....n+p,)(A) for this case and we conclude that c$) = 1 with [ t ]  being the 
representation (n +PI, n + pz ,  . . . , n + pm) of U(m1n). We introduce the pictorial notation 
(n  + p ]  = (mn](p] ,  which will be useful in the what follows. 

(bJ(iii) The case of arbitrary (p) and {q] .  Now we discuss the main result of this paper 
which states that the representations of U(mln) with q , l  # 0 are characterized by the 
following Young tableaux: 

with the normalization coefficient given by 

The Young tableau {G] = (:$) introduced in (24) is constructed by starting from the basic 
array[n+r)=[mn){r)defined previously, together with the array(s)={sl,s2, .. .,s,,], 
which is subsequently transposed and attached to the left bottom of it. 

An important result that leads to the above conclusions is that 

S X l i I ( M )  = ( - l ) I q I w ,  ~ ) X I P I ( A ) X I ' ? t ( ~ ) .  (26) 
Now we give some details of the proof of (26). We start from the relation 

S X l m n ) { u l ( M )  = X ) X { u t ( A )  (27) 
which is valid for every representation { U )  of U(m).  The proof will follow in two steps. 

(i) First we prove, by induction, that 

sX{i , ) (M) = ( - 1 ) l r L ' ~ ( ~ ,  i ) X { p t ( A ) X { r t I T ( ~ ) ~  (28) 
where (6) = (I:;) is a Young tableau of the type (24) with {rl) = @ I ) ,  rl < n, 
corresponding to a single row with rl boxes, which is attached without transposition to 
the bottom of [ m n ) { p ) .  Let us consider first the case (1) = (U}, that is r1 = 1. Taking 
{ U )  = { p ]  in (27) and multiplying both sides by sXlol(M) = x{o)(A) - X ( o t ( x )  we obtain 

= ~ ) X I P I X O ( A )  - W, h)Xlpi(A)Xiol(i) (29) 
where [&I )  = (if:), Applying (27) to the case {U) = { p }  x U in (29) we are left with 

sXli,,l(M) = -c(A, h ) X l p ) ( L ) X l O i T ( h )  (30) 
which verifies (28) for this case. Here we have made use of the Young tableux rules for 
multiplying representations. Next we asume that (28) is valid for the tableau @,,] = (If:). 
and prove that it is also valid for {?I(~+I)] = (tii)) with r + 1 < n. For this purpose we 
will make use of the relation [8] 

s X l m n ) ( { p l x n ) ( M )  + s ~ { i l , l ( M )  
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where we recall that (k)  denotes the Young tableau having one row with k boxes, while 
(k)T denotes de Young tableau corresponding to one column with k boxes. Considering this 
relation for n = r + 1, separating the k = r + 1 term~in the summation and multiplying 
both sides of (27) by (31), we obtain 

x xw (h) + (- 1 I r + l  (A, h) X I ~ I  (A) XO+I)T (% (32) 
The first terms of both sides are equal (by virtue of the hypothesis of induction), so this 
last equation becomes the desired result. 

(ii) Following analoguous steps, we can prove by induction on rz that 

S X ( W  ) ( M )  = ( - 1 ) " + ~ w ,  x)xlp,(A)x(~,.R,'(h) (33) 
VI.?) 

for r2 < n. The final choice (rl ,  r2. . . . , r.)= = [q} implies the proof of relation (26), which 
after substitution in (11) leads to our final result (25). 

An immediate consequence of our relation in (26) is that we can obtain the dimension 
for the representations in U(mln) that arise in the supercharacter expansion (sd~:)) in terms 
of the dimension of representations in U ( m )  (dip)) and U(n) (dlq)). Taking 

in (26) and observing that sxlt)(M) becomes sdy), we obtain the closed expression 

SdIi) = ~mndlPldl,l (34) 
for the dimensions of the representations of U(mln) characterized by the tableaux in (24). 
Finally we observe that our expression (75) correctly reproduces the result q:) = 1 for 

40 
Ub). 
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